Turing Machines & 371

Itis clear from the figure that all the IDs of NTM (represented by the nodes of the tree) are placed
in the queue one after the other. Each ID inserted into the queue is also associated with the state
and' the next input symbol to be scanned. The first ID to be explored and examined will be at the
front d of the queue. Given any ID in the queue, all IDs to the left of designated ID are assumed
to Heldeleted (marked) and the IDs towards right are assumed to be explored or to be examined.
"dxample, if current ID is ID3 then ID1 and ID2 are already explored and we need not
r them whereas the ID4, IDS etc., are the nodes to be explored later. The steps carried by
DTM are shown below:

1, The current ID is examined (For the first time current ID is ID1 and is marked/deleted)
| based on the state and the scanned symbol. If the state in the current ID is final state then
DTM accepts the string and the machine halts.:

21 If the state is non final state, the current H)(conﬁguration) is explored and various
- IDs(configurations) obtained are inserted at the end of the queue
3 Step 1 and 2 are repeated until no more ID is examined or queue is empty.

bove steps can be clearly explained using the tree representatlon The root node corresponds
to the initial configuration (initial ID) and it is the only vertex of level 0. All the configurations
. (IDs)ithat are obtained by applying the transition function of NTM only once will be the children
of the initial configuration (ID). These new vertices which are derived from the root are at level 1.
ral, from the configurations (IDs) at level i, the configurations at level i+/ can be
. Since the configurations are finite, the number of children at various levels is finite.

" The easiest way to 51mulate NTM using DTM is to traverse this tree usmg BFS (Breadth-

. vel of the tree, the DTM applies the transition function corresponding to the NTM to each
uration (ID) at that level and computes its children (new IDs). These new. IDs are the
ratlons of the next level and they are stored on the tape (if necessary a second tape may be

ted by a NTM is also accepted by a DTM.

10.14 Turing machine with stay-option

In the Standard Turing Machine, after scanning the symbol and after replacing the symbol on the
tape,jthe read/write head used to move either left or right based on the control mechanism. Apart
from|having the read/write either towards left or right, if there is one more option where in the
reay te head stays in the same position after updating the symbol on the tape (no movement of
re;‘%‘r‘lte head either to the left or right), then the Turing machine is called TM with stay-option.
Formjally, the machine can be defined as follows:

The formal definition of TM with stay-option is provided below:

Pefinition: The Turing Machine M =(Q, X, I', 3, qo, B, F) where

372 H Finite Automata and Formal Languages

Q is set of finite states

Z is set of input alphabets
I" is set of tape symbols
d is transition function fromQ x Cto Q x I" x {L,R,S} indicating the TM may mcv¢
towards left or right or stay in the same position after updating the symbol on the tape.
qo is the start state

B is a special symbol indicating blank character
F c Q s set of final states.

Exercises:

1. Explam the general structure of Multi-tape machmes Show that they are
equivalent to standard Turing machines
- 2. Define non-deterministic Turing machine and show that the language accepte]
NTM is also accepted by DTM and they are equivalent :
3. Define Turing machine with stay option

n -

by

i

Summary

——

» Multi-tape Turing machine

" Now we know

» Equivalence of single tape and multi-tape TM’s
» Non-deterministic Turing Machine

» Turing machine with stay-option

Programming Techniqiles for Turing Machines

What we will know after reading this chapter?

R » Subroutines
» Multiple tracks (Multi-track)
» Solutions for some typical examples

Ac hieving complicated tasks using ™

In the chapter 9, we have shown how the simple operations such as addition, subtraction,
corlcatenation and comparison can be achieved using TM. These are the some of the basic
oparations found in all the computers. Using these basic operations, more complex operations can
be fachieved using the computers. On similar lines, more complex operations can be achieved
usipg TM also using the primitive operations. To achieve this, let us use block diagrams, which
conjtains boxes and arrows representing the action performed by each box and arrows
senting flow of control. The functionality of each component in the block diagram is
ibed, but the implementations are hidden or rather assumed to be implemented (in fact we
car] show how the functionality of each component can be implemented). Let us discuss how
moye complicated functions are performed by TMs using the primitive operations (which can be
cbr,sidered as subroutines or functions) .

11j1 Multiple tracks/ Multi track)

In the Standard Turing Machine, the tape was divided into squares where each square holds only
on¢ symbol. It can be extended so that each tape consist of several tracks. This can be done by
dividing the tape into number of tracks and each track is divided into a number of squares with
eagh square holding only one symbol. If there are n-tracks and the read/write head points to m”™
sqyare, then all the symbols under different tracks beneath that read/write head are the symbols to
be [scanned. So, all the symbols under the read/write head can be considered as set of characters
undler one square. Such a TM is called Turing machine with multiple tracks.

fl 2 Subroutines

Wi fknow that a program consists of zero or more functions (subroutines). On similar lines a
Turing Machine can be a collection of zero or more Turing Machine subroutines. A Turing

Turing Machines & 374

Machine subroutine is a set of states that performs some pre-defined task. The TM subroutine jhas

a start state and a state without any moves. This state which has no moves serves as the reuen

state and passes the control to the state which calls the subroutine.

Example 11.1: Let X and y are two posmve integers represented using unary notation. Des|an

TM that computes the function
f(x, y) = x+y ifx>y
f(x,y) = xx ifx<y

!

The block diagram to add x and y can be written as shown in figure 11.1

X =3 Adder [X+Y ¢

Figure 11.1 Block diagram (subroutine) to add x and y

where x and y are the inputs to the adder, the output of which will be x+y which can be eé.hlfy

implemented (example 9.11). The block diagram to concatenate x with x can be written as sh
. in figure 11.2. : : .

Concatenator XX
T lo. — > fxy

Figure 11.2 Block diagram (subroutine) to concatenate x with x

For thls concatenator, x is the only input. The output will be the integer xx which can
~ implemented (example 9.12). It is clear from the given function that the addition should
performed if x 2 y and concatenation of x with x has to performed whenever x < y. ']
comparator also can be implemented as shown in example 9.13 the block diagram fer which ct
be written as shown in figure 11.3.

X2
x —3 Comparator —Z gs

X<y

Figure 11.3 Block diagram (subroutine) to compute x+y or xx

E¥ET

Whenever x 2y, the comparator enters into the state q; which acts as a trigger to mvoke he

Adder A to add x and y. When x < y, the comparator enters into the state q, which can act

as

trigger to the concatanator which concatenates x with x. The complete high-level block dlagrﬁm

to compute the function f(x,y) using Turing machine is shown in figure 11.4.

.Turing Machines & 375

Ty Adder . |X*Y
gr A
X2
y Compare Y ‘ > f(xy)
- X - C v > Xy
' X<y .
% | Concatenator |*X

. C

Figure 11.4 Block diagram (subroutine) to compare x and y

&)F The TM can also be represented as the combination of blocks which each block

repre enting a TM which can do some primitive operation (like functions in C). All these TMs
tha{ can do some primitive operations can be invoked by another TM, which can be considered as
the fmain program.

Extlple 11.2: Obtain a TM to multiply two unary numbers separated by the delimiter 1.

No e: Let us assume we have two unary numbers x and y such that x has m number of 0’s and y
has{n number of 0’s separated by the delimiter 1 as shown below:

0"10"

The product of x and y should be stored on the tape and the oﬂéinal numbers should not be
destroyed. This can be visualized as shown below: o

0™10"10™

To Ktart with let us assume x = 00 and y = 0000 and are separatéd by delimiter 1. Assume y ends
with 1 which can act as the delimiter for the input string which in turn is followed by infinite
nurhber of blanks (B’s) as shown below: ‘

i X y
| A A
‘ 00100001BBBBBB....

Thd output should be of the form

X y Xy
(—A—\ f"_A'ﬂ
0010000100000000BBBB....

NOTE: It is clearly visible from the above figure that the unary number y is copied two ti
(equal to the number of 0’s in the number x) in the result xy (whichis 00000 00 0). So, to §
- with we think of how to copy the unary number y once so that we can call this TM (whig
represented as a subroutine) repeatedly m (the number of 0’s in x) times to achieve the result.
General Procedure:(Algorithm)

L.

Now, we shall implement all these steps one after the other in detail.

Stép 1 (details) : To implement step 1 in detail, let us take a string of the form:

where the first group, second group and last group are identified as shown below:

Turing Machines & 376

To start with let us assume a tape will have a string of the form 0"10°1BBBBBBBB. ...
which is divided into three groups as shown.below:’

First Second last

group group group-
—r—

r‘(;;w 1 '-8':‘ 1 BBBBBBBB....

where x = 0™ and y = 0" and are separated by the delimiter 1. So, if the input is 010" then

es
ftart
his

this string is followed by 1 (which acts as delimiter between the input and the result. Note
that all B’s will be replaced by the result 0™ later). Now, change a 0 in the first group (x)) to

B.

Copy n number 0’s from the second group to the last group by replacjng n number of B!s
" -by n number of 0’s. ‘

It is clear from second step that “we copy a gréup of n 0’s (replace n B’s) to the last group

3

whenever a 0 is the first group is changed to B”. When all 0’s in the first group are changed

to B’s there will definitely be mn number of 0’s in the last group (which is the produc
first and second group i.e., product of x and y).

Once first three steps are completed, the contents of the tape will be of the form

First Second last
group group group

o
B™ lr_:);‘l 0™BBBB.....

So, by replacing the string 10"1 which is enclosed between the first group and the

group by B’s we will have only 0™ number of 0’s on the tape with ID q,O which is the

result.

000100001BBBBBB....

of

ast

As!
and

On

gr

in {
sed

Turing Machines H 377

group &roup group
OOOIOOOOIBBBBBB._...
Qo

jume qo is the start state. As per the algorithm in step 1, replace 0 by B, change the state to q |
move the head towards right and the corresponding transition for this will be of the form:

&qo, 0) = (qi, B,R)

After applying the above transition, the situation will be of the form:

First Second last

group group ' group

B00100001BBBBBB....
G

Noc, we should copy n 0’s from the second group to the last group. This can be achieved by

ing the pointer head towards right till we encounter 1 repeatedly using the transition

5(‘11’ O) = (ql’ 0» R)

encountering 1, change the state to g2 and the corresponding transition is:

8(qu, 1) =(qz L, R)

N?z:', the pointer points to first zero in the second group and we shall copy n 0’s frem the second

p to the last group. The details are shown in step2.

Sulp 2 (details): (Copy function) This second step of the algorithm (procedure) can be
im

lemented using a subroutine called copy. Now, let us think of how to replace n number of B’s
he last group to n number of 0’s from the second group. For this reason, let us take only the
ond and last group as shown below: '

. Second last
group group

——
00001BBBBBB....

Turing Machines & 378

We have to copy n number of 0’s from the second group to the last group. This can be achi¢

ved

by replacing a B by 0 in the last group immediately after changing a 0 to X in the second grpup.

To obtain the‘ required transitions let us assume the situation' shown below:

Second = . Jast
group group

r——k—"\
XX00100BBBB..

-—>

Q o 3 o,

In this situation, two leftmost 0’s in second group are replaced by X and the correspondmg two

and the next symbol to be scanned is the symbol pointed to by q. It is clear from the above fi
that in state q, on input 0, change the state to q;, replace 0 by X and move the pointer tow.
right using the transition

a(ql’ O) = (‘h, X’ R)

leftmost B’s are replaced by two 0’s in the last group. Let us acsume the machine is.in stag q:

After applying the above transition, the situation is shown below:
Second last
group' group

XXX0100BBBB....

q3

Now, in state g3 on any number of 0’s or 1’s we can stay in g3 and simply move the head towards

ure
rds

right. But, on encountering a B, change the state to g4, replace B by 0 and move the head towards

left (to replace leftmost zero by X in the second group) using the following transitions:
5((13, 0) (Qs, 0 R)
&(qs 1)=(qs LLR)
(93, B) =(gs, 0, L)

After these transitions, the situation will be of the form shown below:

Second last . ,
group group
f_—Aﬁ
XXX01000BBB....
Q4

.In state g4, we should search for rightmost X (te get leftmost 0). So, keep updating the h
towards left on encountering 0’s or 1’s and on encountering an X, change the state to
replacing X by X and move the pointer towards right. The corresponding transitions are:
v 8(qs, 0) = (g4, O, L) .
5((14, l) = (q4’ 17 L)
8(q4, X) =(q2 X, R)
- ‘After applying the above transitions, the situation is shown below:

ead
q>,

i : Turing Machines & 379

Second last
group group
——
XXX

i‘) 1000BBB....

q2
It i clear from this situation shown in above figure that, if there are only X's in second group
(megins no 0’s left), there will be a transition from state q: on 1 which implies that n number of
B’sin the last group are replaced by n number of 0’s. So, g> on 1 we move towards left and
change the state to gs as shown in the situation below usmg the transition 8((]7, D= (gs I L):

SCCOnd last
group group

f——gﬂ
XXXX10000BB....
qs

In state g5 we should see that all X’s are replaced by 0’s. So, when we move towards left, we may
encqunter a delimiter 1. In that case, we simply move the head towards right by changing the
statd to q¢. The corresponding transitions are:

8(as, X) = (g5, 0, L)

5(‘]5, l) (qb’ 1 R)

Now, step 2 of the general procedure is completed when a leftmost 0 in first group is replaced by
B and the corresponding transition dlagram is shown below:

I/1,R l/l,L
0/OR oL

~ ‘ X, /0,
Start 0

Using the above transition diagram, we can have the actual C function to implement copy
function and we call this function as the “Copy function”.

Step 3 (details) : Once step 2 is completed the current contents of tape will be of the form shown
below:

Turing Machines &

.group Eroup group

(\) f_—&ﬁ

BOO l$000 10000BB....
Qo »

380

It is clear from this figure that, when leftmost O in first group is repléced by a B, n 0’s from the

second group have been copied into last group. Now, we should replace the next leftmost
first group to B and repeat the process again. So, q¢ on 0, change the state to g; and mov¢
head towards left using the transition

5(‘-!6- 0) = (q7! 0, L)

_ In state gy, on 1 change the state to gg and move the head towards left using the transition
8((1% l) = (q& la L)

In state gg on input zero move the head towards left using the transition
S(CIB, 0) = (q99 09 L)

In state o on any number of 0’s move the head towards left using the transition

6(q99 O) = (q% 0; L)

0in
* the

But, if we encounter a B, change the state to qo and move the pointer towards right using the

transition ‘
6(q9! B) = (qO, B’ R)

The purpose of the states qs, qs and qo is to take control after copying a block of n 0’s from the
second group to the last group so as to obtain the leftmost zero in first group. But, in state gg on
encountering B, it means that n 0’s have been copied from the second group to the last gron m

number of times.and the situation is shown below:

First Second

aroup last
group group ,
(\ , N ,
BBI%H)OOOIOOOOOOOOOOOOBBB .
qs

Now, let us replace the delimiter 1 which precede and follow the second group including the

second group by B's. This is possible using the transitions shown below:

So, the Turing machine to accept the given language is given by

whete

The

-3(qs, B) =(q10, B, R)
&qio. 1) =(qu1, B,R)
8(‘-]lh 0) =(qu, B.R)
&qi. 1) =(qi2 B,R)

M=(Q, 2, r98’q07B9F)

Q = {90, 91, 92. 93. 94, G5 Ge» 97. 98, G9» Q10 G11- Gi2}

2 ={0,1}

' ={0, 1, X, B}

. qo€Q is the start state of machine.

B e T is the blank symbol.

F=¢

6 is shown below.
8(qu O) = (qh B, R)
qi, 0)=(q1, 0, R)
5(‘11, l) = (ql’ 1’ R)
6(q2’ 0) = .(q3’ X, R)
8((13, 0) = (q3’ 0, R)
g3, 1)=(gs, 1, R)
5(‘]3, B) = (q49 09 L)
5(CI4, 0)=(qs, 0, L)
8(qs, D=(qs, 1, L)
5(%, X) = (q27 X’ R)
8(‘-]5, X) = (QS» 0¢ L)
5(‘]& l) = (qﬁ’ 1’ R)
3(qe, 0) = (g7, 0, L)
5(‘]% 1) = (‘18, 1, L)
5(‘]& 0) = (q% Os L)
8(qq, 0) =(qs, 0, L)
3(qe, B) =(qo. B, R)
3(qs, B) = (qi0. B, R)
3(qi0, 1) =(q11, B, R)
8(qn’ 0)= (qu1, B, R)
&(qu1, 1) =(q12 B, R)

corresponding transition diagram is shown below:

Turing Machines & 381

Turing Machines &

0/0,L

qo
e 0/0,L

Exercises:
1. Design a TM that computes the function
' f(x,y)=x+y ifx2y
f(x,y) = xx ifx<y

2. Obtain a TM to multiply two unary numbers separated by the déiimiter 1.

Now, we know

» Subroutines
» Multiple tracks (Multi-track)

» Solutions for some typical examplés

’ .
! _
% }0/03,@1/1,1, & B/B,Rl/B R @ IBRY

382

Restricted Turing Machines

What we will know after reading this chapter?

: » Turing machine with semi-infinite tape
: > Multi-stack Machines

» Counter Machines

» Off-line Turing machine

» Linear bounded_automata

So far in the previous sections, we have discussed various concepts of Standard Turing Machines
and other variations of TM. Now, we shall concentrate on the other variations of TM by imposing
certain restriction on TM. Instead of providing the complete simulation, we shall provide only
bropd outline to show that the machines are equivalent. We can have so many variations of
ard Turing machines. With minor modification we can have the following Turing machines:
Turing machine with semi-infinite tape

Multi-stack Machines

Counter Machines

Off-line Turing machine

Linear bounded automata

Turing machine with semi-infinite tape

Standard Turing Machine, there was no boundary specified for the left side as well as right
side of the tape. The read/write head can be moved infinitely towards left as well as towards right
i.e., the tape was unbounded in both the dlrectlons Now, if we restrict the read/write head to

in figure below:

-

Turing Machines &=

384

It is clear from the above figure that there are no cells to the left hand side of the initial head

position and this .r‘estﬁction does not affect the power of the machine. The TM M can simulate
semi-infinite TM M using two tracks for a tape as shown below:

Track 1 <4— Right part of standard tape

Track 2 4— Left part of standard tape

The upper part represents trackl and in these cells let us store the information which lies to

head. The lower part i.e., track 2 contains the left part of the reference point in reverse order.
machine M which is simulating Mg will use the information of track 1 as long as the read-
head of the M is towards right of the reference point. When Ms moves towards left of

right of some reference point. Initially, the reference point could be the position of the read—Ete

reference point, the machine M uses cells of track2 from right to left. We can partition the stttes

of M into Q, and Q; so that the states of Q, are used when working with respect to track 1

the states of Q, are used when working with respect to track 2. Some special markers such a
can be placed at the left hand side of track 1 and track 2 to enable the programmer to sw
between the tracks. Following in this direction, we can show that M and M; are equivalent.

12.2 Multi-stack machines

All the languages which are accepted by PDA are accepted by TM. At the same time, pny

the

the

he
ite
the '

nd
b #s
itch

language which is not accepted by PDA is also accepted by TM. TM is a generalized machine

which can accept all languages. The multi-stack machine is generalized model of PDA]
machine with three stacks is shown below: '

Input

Finite

Accépt/Reject
—>
control

Stack 1 Stack2 Stack 3

The pictorial representation of 3-stack machine will have 3 stacks. In general, a k-stack machine

is a deterministic PDA with k stacks. Similar to the PDA, it accepts input chosen from
alphabets X and has a finite control. All the k stacks will have the alphabets chosen from s

alphabet I". The move of the multi-stack depends on:

A

the
tack

Turing Machines & 385

1. The current state of the finite control
2. The input symbol chosen from X
3. The symbol on top of each stack

On¢e the transition is applied for the current state, input symbol and the current top of each stack,
the multistack machine may:

1. Change the state (or it may remain the same state)

2. It may replace the top of the stack

Thys, the general transition for a k-stack machine may take the form:

g a, X, X,.....X0) = (p, a4, @y, ay,.... axy Where X; is on top of the stack for 1 <i<k. It
is glear from this transition that each symbol on top of the stack can be replaced by different
symbols. It can be shown that any language accepted by Turing machine, is also aceepted by two-
stagk machine. '

123 | ‘Counter machines

Thé counter machine is a restricted multi-stack machine which can be interpreted in several ways:
The counter machine is similar to that of multi-stack machine’ with some modifications. Each
sthdi in the machine is replaced by a counter. Each counter holds a non-negative number. The
move of a machine depends on the current state, current input symbol and if one of the value of
the icounter is zero. The machine can do the following activities in one move:

a. It can change the state

b. It can add or subtract 1 from the counters. But, if the counter is zero, subtracting

of 1 from that counter is not possible '

Some observations of the languages accepted by counter machines are shown below:

1. The languages accepted by counter machines are recursively enumerable i.e., we can
obtain an equivalent TM to accept those languages which are accepted by counter

~ machines. :

2. A language accepted by only one counter machine is context free language.

Off-line Turing machine

Standard Turing machine we have assumed that the tape has both the input and output. To
with contents of the tape are assumed to be input symbols and once the TM reaches the final
, the contents of the tape are considered ‘as the output. Now, if we have a separate input

curfent symbol read from the input buffer and the symbol which is currently pointed by
reafllwrite head. The formal definition of Off-line Turing machine is shown below:

{
1
|
!
I8
{
i
i

Turing Machines & 3386

Definition: The Turing MachineM =(Q, X, I, 8, q0, B, F) where

Q is set of finite states

2 is set of input alphabets

I" is set of tape symbols .

d is transition function fromQx X x " to Q x F x {L.R}

qo is the start state -

B is a special symbol mdlcatmg blank character : o
F € Q is set of final states: :

12.5 Linear bounded Automata (LBA)

In the previous sections, we havé seen that the power of Turinn Machiné can not be exter

string. Thus using TM and by resmctmg the usage of tape, we can obtain LBA, we cons
PDA and finite automaton. It is clear from all these types of machines that TM is superset o
these machines. The formal definition of LBA is prov:ded below:

Definition: The Linear Bounded Automaton is a TM _ _
M=(Q’ zv Fs S,q()v'B’F)

where

Q is set of finite states

X is set of input alphabets which also has two spcaal symbols ‘[*and ‘]

I" is set of tape symbols '

d is transition function fromQ x I' to Q x with two more transitions of
the form 8(q;,[) = (q;,[,R) and 8(q;,]) = (g;,],L) forcing the read/write head to be within
the boundaries ‘[and ‘]’ . ;
qo is the start state

B is a special symbol indicating blank character’
F ¢ Q is set of final states

'2QXI'X(L R}

It is clear from the definition that the read/write head cannot go out of the boundaries specified as
‘[*and ‘]’. Now, the string can be accepted by LBA only if there is a sequence of moves such'that

qolw] F* [xqez]
for some gs€ Fandx,ze I

Turing Machines & 387

- Undecidability: A machine may accept a language or it may not accept(reject) a language. So,
the putput of the machine may be accept or reject. This problem is called membership problem.
Formally, the membership problem can be stated as “Given a machine M and a string x, does M
accépt x?” The output will be yes/no. Given. a language, the machine may have to identify
whether the language is finite or infinite. All such problems with two answers yes/no,
accept/reject, finite/infinite are called decision problems. For majority of the decision problems,
we ran design decision algorithms.

According to Church-Turing thesis, an appropriate way to formulate the idea of a

decision algorithm precisely is to use a Turing machine. For some decision problems we can

tot 1s, we can divide problems into two groups:
1. The problems for which the solution exists in the form of algonthms i.e., If there is

’ an algorithm to solve a problem, there exists a Turing machine that halts whether the
input is accepted or rejected. .

“2. The problems that run forever i.e., a Turing machine will not halt on mputs that they
do not acccpt

Now, we shall see “What are solvable/decidable problems and what are not solvable

(unsolvable/undecidable) problems?”

126 A Language that is not Recursively Enumerable

Deflnition: The decision problems that have decision algorithms the out of which yes/no are
called solvable problems. According to Church-Turing thesis, an appropriateé way to formulate
predisely the idea of a decision algorithm is to use a Turing machine. The language L accepted
by a Turing machine M is recursively enumerable language if and only if L = L(M). Any
instance of a problem for which the Turing machine halts whether the input is accepted or
rejected is called solvable or decidable problem. There are so many problems that are solvable.
But| there are some problems that are not solvable. Now, we shall see what are called
unsolvable/undecidable problems.

there are some problem input instances for which Turing machines will not halt on inputs that
they do not accept. Those problems are called unsolvable or undecidable problems. In general, if
there is no general algorithm capable of solving every instance of the problem, then the decision
problem is unsolvable. More precisely, if there is no Turing machine recognizing the language of
all trmgs for various instances of the problems input for which the answer is yes or no, then the
decision problem is unsolvable.

- Let us assume M is a Turing machine with input alphabets {0, 1}, w is a string of 0’s and
I’s jand M accepts w. If this problem with inputs restricted to binary alphabets {0, 1} is
undecidable, then the general problem is undecidable and can not be solved with a Turing
madhine with any alphabet.

De}nition: The problems that run forever on a Turiﬁg machine are not solvable. In other words,

Turing Machines &' 388
Note: The term unsolvable and undecidable are used interchangeably.

Note: Even though we are able to answer the question in many specific instances, a problem|may
be undecidable. It means that there is no single algorithm guaranteed to provide an answer for
every case. '

Note: If a language L is not accepted by a Turing machine, then the language is not recuré vely
enumerable. One - important problem which is not recursively enumerable that is
unsolvable/undecidable decision problem is “‘Halting problem™.

12.7 Halting Problem

The “Halting Problem™ can informally be stated as “Given a Turing machine M and an input
string w with the initial configuration g, after some (or all) computations do the machine M
halts?” In other words we have to identify whether (M, w) where M is the Turing machine, halts
or does not halt when w is applied as the input. The domain of this problem is to be taken a the
set of all Turing machines and all w i.e., Given the description of an arbitrary Turing machine M
and the input string w, we are looking for a single Turing machine that will predict whether not
the computation of M applied to w will halt.

When we state decidability or undecidability results, we must always know what the
domain is, because this may affect the conclusion. The problems may be decidable on .
domain but not on another.

It is not possible to find the answer for Halting problem by simulating the action of

enters into an infinite loop, then no matter how long we wait, we can never be sure that
in fact in a loop. The machine may be in a loop because of a very long computation.
required is an algorithm that can determine the correct answer for any M and w by perfi
some analysis on the machine’s description and the input.

Formally, the Halting Problem is stated as “Given an arbitrary Turing machine M =3 (Q,

3, T,8,q0,B, A)and the inputwe X, does M halt on input w?”

Post’s Correspondence Problem

The Post correspondence problem can be stated as follows. Given two sequences of n strmgs on
some alphabet 2 say

A=W, Ws,...,W,
and

‘B =v,Va,...0Vn ;
we say that there exists a Post correspondence solutlon for pair (A,B) if there is a nonempty
sequence of integers i,j,......k, such that

w; w,,,,,wk = ViVj,.. Vi
The Post correspondence problem is to devise an algorithm that will tell us, for any (A,B)
whether or not there exists a PC-solution.

For example, Let X ={0.1}. Let A is w1, w2, w3 as shown below:

Turing Machines & 389
wy =11, wa = 100, wy = 111
Let B is v1, v2, v3 as shown below:

e V|=lll,V3=ml,V3=ll
Forlthis case, there exists a PC-solution as shown below:

wl w2 W3
A g A AL
1 1 1 0 0 1 1 1
Y ' Y
vl v2 v3
If we take '
: w; = 00, wa =001, wa = 1000

v; =0, v3= ll vi=011

there cannot be any PC-solution simply because any strmg composed of elements of A will be
longer than the correspondmg string from B

De mtlon of Multi-tape TM: A multi-tape Turing Machine is nothing but a standard Turing
Machine with more number of tapes. Each tape is controlled independently with independent
read-write head. The various components of multi-tape Turing Machine are:
~a. Finite control
i b.. Each tape having its own symbols and read/write head.

1
t

Each tape is divided into cells which can hold any symbol from the given alphabet. To start with
the TM should be in start state g, If the read/write head pointing to tape 1 moves towards right,
the read/write head pointing to tape 2 and tape 3 may move towards right or left depending on the
transition. The formal definition of Multi-tape Turing machine can be defined as follows. -

Defjnition: The Multi-tape Turing Machine is an n-tape machine

E M=(Q, z, rasqustF)
where

Q is set of finite states’

X is set of input alphabets

I" is set of tape symbols

d is transition function fromQx I'"toQx I'"x {LR} "
Qo is the start state

B is a special symbol indicating blank character

F € Q is set of final states

The move of the multi-tape TM depends on the current state and the scanned symbol by each of
the tape heads. For example if number of tapes in TM is 3 and if there is a transition

Turing Machines & %390

&g,a,b,c)=(p,x,y,z,L,R,S) |
where g is the current state. The transition can be interpreted as follows. The TM in state q will be
moved to state p only when the first read/write head points to a, the second read-write head points
to b and third read/write head points to ¢ and the read/write head will be moved to left in theifirst
case and right in the second case. But, the read/write head with respect to third tape will n{t be
altered. At the same time, the symbols a, b and ¢ will be replaced by x, y and z. It can be e

shown that the n-tape TM in fact is equivalent to the single tape Standard Turing Machine. -

sily

Exercises:

Write short notes on the following variations of TM
* Turing machine with stay-option
» Turing machine with multiple tracks

® Turing machine with semi-infinite tape
s Off-line Turing machine
* Multi-tape Turing machine
= Linear bounded Automaton
Summary

Now!! We know

Turing machine with semi-infinite tape
Multi-stack Machines ‘
Counter Machines
Off-line Turing machine
Linear bounded automata

VVVVYVY

